Configuração do Leica CS15 (controlador)/GS15 (receptor) para a coordenação em modo

estático de pontos

Receptor GS15 e controlador CS15

Teclado do controlador CS15

a) Icons
b) Title
c) Screen area
d) Message line
e) Softkeys
f) ESC
g) Fn
h) CAPS
i) Time

Element	Description
Time	The current local time is shown.
Title	Name of the screen is shown.
Screen area	The working area of the screen.
Message line	Messages are shown for 10 s.

Element	Description
Icons	Shows status information of the instrument. Refer to "2.1.2 Icons". Can be used with touch screen.
ESC	Can be used with touch screen. Same functionality as the fixed key ESC. The last operation will be undone.
Entry mode	The caps mode for upper case letters is active. The caps mode is activated and deactivated by pressing the CAPS key.
Fn	Switches between the first and second level of function keys.
Softkeys	Commands can be ran using F1-F6 keys (only applicable for CS15 field controller). The commands assigned to the softkeys are screen-dependent. Can be used directly with touch screen.

Softkey	Function Key	Description
OK	(F1)	To select the highlighted option and to continue with the subsequent screen.
Page	(F6)	To change to another page on the current screen.
Help	Fn (F1)	To open the Leica SmartWorx Viva online help.
Home	Fn (F2)	To move the focus to the top of the list shown in the current screen.
End	Fn (F3)	To move the focus to the bottom of the list shown in the current screen.
Quit	Fn (F6)	To exit the current application and return to the screen from where the application was accessed.

Key		Function
Fin	+ (4)	Hold Fn while pressing 4. Increase the screen brightness.
(fin	+ (7)	Hold Fn while pressing 7. Decrease the screen brightness.
(fin	+ (6)	Hold Fn while pressing 6. Increase the volume for acoustic warning signals, beeps and keypresses on the CS field controller.
(fin)	+ (9)	Hold Fn while pressing 9. Decrease the volume for acoustic warning signals, beeps and keypresses on the CS field controller.
Fin	+ (0)	Hold Fn while pressing 0. If keyboard illumination is already off: Turns on keyboard illumination. If keyboard illumination is already on: Turns off keyboard illumination.
(fin	+ \bigcirc	Hold Fn while pressing .. Take a screenshot of the current SmartWorx Viva screen. Refer to "Taking a screenshot".

The screen icons display the status information of the instrument.
The icons provide information related to basic instrument functions. The icons that appear depend upon which instrument is used and the current instrument configuration.

Icon	Description
Position status	Displays the status of the current position. As soon as this icon becomes visible the instrument is in a stage where practical operation can commence.
Number of visible satel- lites	Displays the number of theoretically visible satellites above the configured cut-off angle according to the current almanac.
Contributing satellites	Displays the number of satellites that are contributing to the currently computed position solution. The number of contributing satellites can differ from the number of visible satellites. This differ- ence can be because satellites cannot be viewed, or because the observations to these satellites are considered too noisy to be used.
Realime device	Displays the real-time device configured to be used.

Icon	Description
Real-time status	Displays the status of the real-time device configured to be used.
Current active instrument	Displays the instruments that are currently configured and active. When more than one instrument is configured, the instrument at the front of the icon is the active instrument.
Camera	Select this icon to begin the camera function.
Internet online status	Displays the Internet online status of the CS field controller.
Memory storage	Displays the status of the internal memory or data storage device.

Icon	Description
Data management	Select this icon to open the data management pages for Points, Lines or Areas. If there are open lines or areas, a o symbol will appear in the icon.
Battery	Displays the status and location of the battery.

Main Menu function	Description
1	Go to Work! To select and start an application.

Main Menu function	Description 2Jobs \& Data To manage jobs, data, codelists, GNSS antennas, reflec- tors and coordinate systems. To export data from a job on the instrument to a file on the memory device in a customised ASCII format or in DXF format. To import ASCII, GSI or DXF data from a file on the memory device to a job on the instrument. To copy points between jobs.
3	Instrument To access all configuration parameters related to a survey, the instrument and the interfaces.
To view the various instrument status screens.	
For TS11/TS15: To configure the camera, if available.	

Main Menu function	Description 4
User To format the memory device. U To upload files relevant for the instrument functionality, for example, firmware files, language files and licence keys. To transfer data between the memory device and a standard and simple FTP server. To view files on the memory device or the internal memory. To access all configuration parameters individualising the system and the working style. For TS11/TS15: To check and adjust the compensator, index error and line of sight error.	

No caso da versão em Português do software Smart Worx Viva v1.20, o menu principal dividese em Programas (Go to Work!), Dados (Jobs \& Data), Instrumento (Instrument) e Utilizador (User)

Deve iniciar-se a sessão de observação pela definição de um trabalho novo ou pela seleçcão de um trabalho já definido, em Dados, respectivamente em Novo trabalho ou Trabalho medições, traduzindo-se este procedimento na definição do local (pasta) onde os ficheiros resultantes da observação vão ser guardados (na memória interna do controlador).

Jobs \& Data

Creating a New Job

General steps to create your first job in SmartWorx Viva.

Creating your first job

- From the Main Menu, select Jobs \& Data and press OK.
- Select New job from the Jobs \& Data menu and press OK.
- Enter a name for the job.
- Use Page to toggle between the pages to set the proper Codelist, CAD files, Coord system, TPS scale and Averaging.
- Press Store to save the job.

[^0]Viva GNSS, Working with Memory Devices

De seguida deve seleccionar-se o ficheiro de configuração das observações em Utilizador, Guia de configurações, Editar uma configuração, Estatico 5seg; de forma a ter-se a certeza se os parâmetros são os desejados, deve-se confirmar o modo de observação (estático), a taxa de registo (5 s), registo no controlador, antena (GS15 pilar).

Pode então iniciar-se a recolha de observações em Programas, Medir, preenchendo-se o nome do ponto estação e respectiva altura.

To change to one of the displayed settings, or access a quick check function, do one of the following;

- Tap on the icon on the touch screen.
- Highlight a field and press Θ.
- Highlight a field and press
- Highlight a field and press OK.
- Press the number next to the setting or function.

You have finished measuring your first
point object.
Once the point is stored then the code and
attribute value that was stored are
displayed.

Os ficheiros de dados correspondentes a múltiplos pontos estacionados são sempre guardados na pasta seleccionada (em formato Leica), que se refere ao trabalho em causa, sendo distinguidos pelo nome atribuído às diversas estações. Para retirar os dados do controlador pode utilizar-se a porta USB: carregando simultaneamente nas teclas Fn e Home, tem-se acesso ao Windows; aí, seleccionar My Device, Leica Geosystems, Smart Worx Viva, DBX, e procurar a pasta utilizada para guardar os ficheiros, efectuando copy+paste para a pen. Para voltar ao software de aquisição de dados, seleccionar o icon Viva.

a) Slot cover
b) Screen
c) Keyboard
d) Port cover
e) Power socket
f) USB A Host port
g) Docking station contacts
h) LEMO port (USB and serial)
i) USB Mini port
j) DSUB9 port

Localização da porta USB

Step	Description
S	Turn CS field controller over to gain access to the battery compartment.
1.	Push the slide fastener in the direction of the arrow with the open-lock symbol.
2.	Open the battery compartment.
3.	Pull the battery from the battery compartment.
4.	Place the battery into the battery compartment with the Leica logo facing to the top.

Substituição da bateria do controlador CS15

Instrument	Description
GS15	Up to 16 L1, 16 L2, 16 L5 channels (GPS), up to 14 L1, 14 L2 channels (GLONASS), up to 14 E1, 14 E5a, 14 E5b, 14 Alt-BOC channels (Galileo), four channels SBAS (EGNOS, WAAS, MSAS, GAGAN), code and phase, real-time capable

a) RTK device compartment including port P3
b) RTK device LEDs
c) Battery compartment 2
d) LEDs, ON/OFF button and Function button
e) LEMO port Pl including USB port
f) QN-connector for external UHF or digital cellular phone antenna
g) LEMO port P2
h) Battery compartment 1 with SD card slot
i) Mechanical Reference Plane (MRP)

Receptor GS15

a) ON/OFF button
b) Function button

Step	Description
$\sqrt{\sigma}$	The batteries are inserted in the bottom part of the instrument.
1.	Push the slide fastener of one of the battery compartments in the direc- tion of the arrow with the open-lock symbol.
2.	Remove the cover from the battery compartment.

Substituição da bateria do receptor GS15

1 Descrição do sistema		
1.1 Componentes do sistema		
Componentes principais	Componente	Descrição
	Receptor	Para cálculo da distâncias a todos os satélites no campo visível.
	RX1200	Para operação da interface do utilizador, através de teclado ou do o écran táctil com a caneta fornecida com o instrumento.
	Antena	Para receber sinais dos satélites do sistema GNSS (Global Navigation Satellite System).

Receptor Leica 1200

Receptor	Descrição
GX1230 GG	14 canais L1, 14 canais L2 (GPS), 12 canais L1, 12 canais L2 (GLONASS), 2 canais SBAS, código e fase, capacidade de tempo real
GX1230	Canais 14 L1, 14 L2, 2 canais SBAS, código e fase, capaci- dade de tempo real
GX1220 GG	14 canais L1, 14 canais L2 (GPS), 12 canais L1, 12 canais L2 (GLONASS), 2 canais SBAS, codigo e fase
GX1220	Canais 14 L1, 14 L2, 2 canais SBAS, código e fase
GX1210	Canais 14 L1, 2 canais SBAS, código e fase
GX1200 com opção PPS/Event	Canais 14 L1, 14 L2, código e fase, capacidade de tempo real, com portas de evento e PPS
GRX1200 Pro	Canais 14 L1, 14 L2, código e fase, capacidade de tempo real, com evento, PPS, oscilador e porta NET, para aplica- ções de estação de referência
GRX1200 GG Pro	14 14 GPSGLONASS12 canais L1, 12 canais L2, código e fase, com capacidade de tempo real e com portas para eventos, PPS, oscilador e NET, para aplicações de estação de referência

Componentes do receptor

a) RX 1200
b) Caneta (incluida no fornecimento)
c) Contactos com mola para ligação do RX1200 sem cabo
d) Reentrância para RX1200
e) Calha de guiamento para caixa de aparelho
f) Botão On / Off
g) Luzes avisadoras (LEDs)
h) Compartimento da bateria 2 ou porta NET
i) Compartimento da bateria 1
j) Compartimento para cartão CompactFlash

Botão ON/OFF
O receptor pode ser programado no escritório e utilizado no campo sem o RX1200 instalado. Neste caso, o receptor é ligado premindo o botão ON/OFF durante 2 segundos; para desligar o receptor, premir o botão ON/OFF durante 4 segundos. 0 acendimento permanente do LED com cor verde indica que o receptor se encontra ligado.

As baterias são introduzidas pela frente do receptor.

Interface do Utilizador

Princípios de operação

Teclado e ecrä táctil
A operação da interface do utilizador, através de teclado ou do o ecrã táctil com a caneta de contacto fornecida com o instrumento O fluxo de trabalho é igual para o teclado e para o ecrã táctil. A diferença é o modo como as informações são seleccionadas e introduzidas.

Ligar o instrumento

Desligar o instrumento

O instrumento pode apenas ser desligado através do ecrã GPS1200 Menu Principal.

Premir ao mesmo tempo as teclas UTILZ e PROG.
OU
Premir ESC durante 2 segundos.

Bloqueio/Desbloqueio do teclado

Opção	Descrição
Bloqueio	Para bloquear o teclado, premir e manter accionado SHIFT durante 3 segundos. A mensagem 'Keyboard locked' aparece por breves momentos na Linha de Mensagens.
Desblo- queio	Para desbloquear o teclado, premir e manter accionado SHIFT durante 3 segundos. A mensagem 'Keyboard Unlocked' aparece por breves momentos na Linha de Mensagens.

Símbolos

Descrição	Os símbolos mostram o estado corrente do receptor.
\%	Os símbolos fornecem informações relacionadas com as funções básicas do receptor. Os símbolos apresentados dependem do receptor GPS1200 utilizado e da sua configuração.
Posição dos símbolos no ecrã	a) Estado da posição b) Número de satélites visíveis c) Satélites contribuintes d) Dispositivo em tempo real e estado em tempo real, estado da Internet e) Modo de posição f) Bluetooth $\left.{ }^{(}\right)$ g) Linha/área h) Cartão CompactFlash/memória interna i) Bateria j) SHIFT k) Codificação rápida
	Seleccionar Menu Principal: Medição. OU Premir PROG. Seleccionar Survey. CONT (F1).
Iniciar o programa SURVEY Survey	11:40 MEDCALO Inicio da Hedictio

A sequência a utilizar neste caso é:
Gestor: trabalho novo, sistema de coordenadas=ETRS89
Configurações: registo de observações=estático, taxa de registo=5 s, ocupação do ponto=normal, antena=AX1202 pilar, paragem auto=não

Medição: ocupa, pára

Processamento de dados GNSS para coordenação em modo estático de pontos de apoio a partir de uma estação de referência com o LEICA Geo Office

0) Configuração do Leica Geo Office
a) Geoids : Inserir o modelo de geóide para Portugal continental (GeodPT08)

b) Projections : Definir o sistema de projeç̧ão : PTTM06

c) Coordinate System : Actualizar ou verificar a correçção do sistema de coordenadas

Coordinate System properties		8 -
General		
Name:	ETRS89	
Transformation:	None	\square
Trans. Type:	[
Residuals:	No distribution	-
Local Ellipscid	GRS 1900	\checkmark
Projection:	PT-TM06	\bullet
Proj. Type:	TM	
Geoid Mcdel:	GeodPt08	\square
Cscs Model:	None	\checkmark
Note:		
Last Modfied:	21.02 .201112	
		Cancel

d) Criar uma antena : Antenas > New (os parâmetros importantes são o centro de fase)

Anterna properies				$3 \quad x$
General Addtiond carmetions \|				
Name:	65T5Ply	Hersantal offost	0.0	m
GSS rama	LEIGS15	Vatical efthet:	0.0	m
Solid number:				
Serep if	$0 \div$	T. 11 only		
Phese center offeets	511		12	
Vetical	0.2021 m	Vetical.	0.2007	m
North:	0.0 m	North:	0.0	m
Eat:	00.0 m	Eax:	100	It
Corrections:	Bevation and azmun			
			OK	Cancel

1) Definir um projecto novo (File+New Project) ou abrir um projecto já existente (File+Open Project)

\% LECA Geo Office
File Import New Project... Open Project... Print Print Setup... Recent Projects Exit

Como exemplo, criar o projecto apoio e, em Coordinate System, selecionar a opção PT-TM06.
2) Importar dados para o projecto: Import, Raw Data (neste caso os dados foram registados em formato Rinex, no receptor, sendo importados directamente neste formato) e seleccionar cada ficheiro de extensão .o (observações)

Indicar a localização dos ficheiros e importa-los (Import)

Associar os dados ao projecto (Assign) e, com Close, terminar a importação do ficheiro

Dados importados relativos à estação de referência e a um ponto a coordenar

3) Confirmar dados relativos à altura da antena de cada ficheiro:

Há diversas instituições que disponibilizam dados de estações GNSS (como por exemplo a FCUL, o IGP, o IgeOE, etc), cujas coordenadas são conhecidas com rigor, embora com frequência surjam dúvidas devido à forma como essa informação é disponibilizada: nalguns casos são fornecidas as coordenadas do centro de fase da antena, noutros do BPA (ponto de referência da antena), noutros do ponto estação.
As medições GNSS são efectuadas relativamente ao centro de fase da antena. O perfil da antena relaciona estas medições com o BPA. A altura da antena relaciona, por sua vez, o BPA com o ponto estação no solo ou num pilar. Caso a cota seja fornecida relativamente ao ponto estação, é necessário conhecer tanto a altura da antena como o respectivo perfil; caso a cota seja fornecida relativamente ao BPA, a altura da antena é nula, sendo necessário considerar o perfil da antena utilizada; caso a cota seja dada relativamente ao centro de fase, não só a altura da antena é nula como não é necessário aplicar um offset vertical.

Height Reading: altura medida desde a marca no solo até à base da rosca da antena (BPA)

A altura da antena relativamente ao ponto estação (Height Reading) é medida com fita métrica desde o ponto estação até ao local indicado na figura da esquerda (BPA), segundo a vertical

No caso da antena GS15, na opção Pillar, os parâmetros do centro de fase relativamente ao BPA são: Offset Horizontal $=0.0000$, Offset Vertical $=0.0000$, Offset fase $L 1=0.2021$, Offset fase $L 2=0.2007$; para fixar a antena à base utiliza-se uma peça que enrosca na antena e que se fixa à base (figura da direita); para facilitar a medição, mede-se a altura da antena até ao topo da base e soma-se a este valor 4 cm ; devem então estes valores ser introduzidos no LGO, em que o Offset Vertical de 0.201 m corresponde à média dos Offsets das fases L1 e L2. Para efectuar as alterações quanto às alturas que devem ser utilizadas, selecionar na opção GPS... o ficheiro pretendido (o relativo ao ponto a coordenar) com o botão do lado direito do rato e alterar não só os parâmetros da antena (em Antenna Type, View)

como também a altura da antena (1.62 m , neste caso)

Quanto à estação de referência da FCUL, é igualmente necessário confirmar os dados de importação:

ESTAÇÃO PERMANENTE (EP) DE AQUISIÇÃO DE DADOS GPS (Serviço EG/FCUL)

(ampliar planta da FCUL)

5. Coordenadas			
Geodésicas	LAT	LON	h (BPA)
ETRS89 (*)	38045'23,2713'	$9009^{\prime 24,7485 " ~}$	155,540
Datum LISBOA	38045'17,6021'	9009'20,2102"	
Datum 73	38045'20,4138'	9009'27,7961"	
Cartográficas	M	P	H (BPA)
HG-DLX	-88990,31	-100730,19	102,17
HG-D73	-88991,92	-100728,42	102,17
Cartesianas	$\mathbf{x} / \mathrm{V} \times$	$\mathbf{Y / V y}$	z/Vz
ITRF2000 (2005.6)	4916949,017	-792574,204	3971367,877
	-0,013	0,025	0,008

(*) Revistas em Fevereiro de 2007

2. Antena

LEICA	Choke Ring AT504	Serial: 959

3. Alturas do centro de fase da antena (ref. ao BPA)

Fase L1: $0,110 \mathrm{~m}$	Fase L2: $0,128 \mathrm{~m}$

4. Serviço RTK

RADIO	Pacific Crest PDL $(* *)$	Canal: 0	RTCM 18\&.19 V2.3
GSM	Siemens MC45 $(* *)$	$n 09124914$ 89	RTCM 18\&.19 V2.3
Internet	Via SmartNet $(* *)$	IP: $81.193 .248 .072 ~$	LEICA, RTCM

(**) Serviço disponibilizado mediante solicitação

Os ficheiros horários (de 5 sec) encontram-se na pasta [1hora], organizados por MM/DD. Encontram-se disponíveis apenas para os últimos 3 meses. Dados de datas anteriores podem ser solicitados por email. Os ficheiros diários horários (de 30 sec) encontram-se nas pastas [nnnn] do respectivo ano, organizados em pastas do dia do ano. Os dados encontram-se todos em formato RINEX compactado. Caso se utilize um software comercial que não reconheça este formato, deve-se utilizar a aplicação CRX2RNX.EXE para descompactar os dados e convertê-los em RINEX standard. As coordenadas que se encontram no ficheiro RINEX correspondem às coordenadas exactas da estação da FCUL no sistema ETRS89. A altura da antena que consta nos ficheiros RINEX ($\mathrm{h}=0.000$) refere-se à base da antena (BPA); em caso de ausência do modelo da antena (LEICA AT504) deve-se considerar a altura da antena $\mathrm{h}=0.120$.

Coordenadas da estação de CASCAIS, IGP, FCUL

GRS80/PTTM06	CASCAIS	IGP	FCUL
Latitude	$38^{\circ} 41^{\prime} 36.28293^{\prime \prime}$	$38^{\circ} 43^{\prime} 33.68565$	$38^{\circ} 45^{\prime} 23.27103$
Longitude	$-9^{\circ} 25^{\prime} 6.68509^{\prime \prime}$	$-9^{\circ} 930.67948$	$-9^{\circ} 924.74894$
h (elipsoidal)	$77.064 / 76.043$	178.862	155.582
H (ortometrica)	23.689	125.471	102.170
M	-111831.916	-89170.497	-88989.446
P	-107442.112	-104106.957	-100729.238

Ver site EUREF (www.epncb.oma.be)

Dados igs.bkg.bund.de/EUREF/obs/ (data Access BKG-EUREF-OBS)
Conversão CRX2RNX -> CASC0830.10d
4) Visualizar a distribuição geográfica e temporal dos dados:

No menu de barras na parte inferior da janela, seleccionar View para visualizar a localização geográfica dos pontos

No menu de barras na parte inferior da janela, seleccionar GPS... para visualizar a localização temporal dos pontos
5) Definir, para cada base, qual a estação de referência e qual a estação móvel

Na opção GPS... do menu de barras, seleccionar com o botão do lado direito do rato o ficheiro correspondente à estação de referência e selecionar a opção Reference, passando a barra para cor encarnada

Para o ficheiro correspondente à estação móvel, repetir o procedimento anterior mas selecionar a opção Rover, passando a barra a cor verde

6) Confirmar/alterar as coordenadas PT -TM06 da estação de referência

Seleccionar a estação tomada como fixa e com o botão do lado direito do rato seleccionar Edit Point

Confirmar/alterar as coordenadas da estação de referência, que vai ser considerada fixa durante o processamento

7) Processar a base selecionando a opção GPS-Proc, Process

Neste caso obteve-se a mensagem de aviso seguinte pois a antena utilizada não consta na base de dados do LGO.
LEICA Geo Office

The following antennas will be used for processing, but have no additional corrections defined:
AT504 LEIGS15 NONE To use complete antenna properties including L1/L2 offsets and additional corrections please first define the antenna properties. Do not prompt in future

Base calculada

Guardar a base calculada em Results, Store

Visualização gráfica da base calculada em View
8) Ajustamento das bases (na realidade, uma transformação de coordenadas)

É necessário definir qual é a estação fixa: em Adjustment, com o botão do lado direito do rato selecionar a estação FCULe,

em Properties, efectuar as seguintes alterações

Obtém-se assim:

9) Exportação dos resultados

Export

ASCII data Export

Definir o local onde o ficheiro vai ser guardado, o respectivo nome e, em Settings, Point, definir a estrutura do ficheiro, ou seja, as quantidades que se pretende exportar. Por fim, Export.

[^0]: 展
 You have finished creating your first job, which is selected as current working job. You will automatically return to the Main Menu and are ready to start the next activity.

